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THE ZONE OF SUPERSONIC FLOW CAUSED BY LARGE
METEORITES STRIKING THE LUNAR SURFACE

by
M, P. Batra

Introduction

Gilbert (1893) and Gifford (1929, 1930) pioneered the
idea of the formation of lunar craters by the explosions asso-
ciated with the impact of large meteorites, Baldwin (1949)
has produced experimental evidence to support the impact theory.
Preliminary estimates of the impact phenomenon were made by
Gilvarry and Hill (1956) who showed that the pressures and tem-
peratures did indeed reach explosion magnitude, Thus shock
wave must be produced,

For simplicity, the lunar surface and the meteorite
were supposed to be composed of the same substance, A hypo- .
thetical element "averagium®" was defined (Gilvarry and Hill
1956) by determining the average atomic number of elements,
weighted by their gross relative abundance by mass over the
silicate, sulphide, and metal phases of meteorites, The
atomic number of "averagium" was found to be 18,5 from the data
of Brown (1949), Then the impact of an averagium meteorite

on an averagium surface was considered,
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Theorx

The meteoritic impact velocities range from 15 km/sec
14

to 75 km/sec and the masses to vary from 10% to 107" kgm
(Hawkins 1963). Such hypervelocity impacts generate pressures
of the order of megabars which are far greater than the shear
strengths of the materials, so that matter behaves as a fluid,
We can therefore set up a fluid dynamical model for solving the
problem of explosive impact, We will assume viscosity is neg-
ligible, The justification for this will follow later.

The first step in the analysis is that of defining the
important physical processes and the associated constitutive
equations which should be included in the theory. The neglect
of shear strength makes possible the use of simple equations
for pressure, density, energy and state, The neglect of thermal
conduction is justified by the following order of magnitude |
consideration (Brode and Bjork 1960, Walsh and Tillotson 1963):

The time for the duration of hydrodynamic phase of
interaction is of the order of =— where L is the

\Y
o

length of the projectile and Vo is the projectile
velocity., The thermal diffusion distance x is of the
order of )Et, A being the diffusivity; So for impact
of a meteorite of.dimension L = 15 meters with

)k==l cmz/sec, Vo = 15 km/sec, the ratio of diffu-

sion distance to I, is of the order of
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1
x/L = ( ’B/VOL)

~ 2 x 107

of
On the basis/this fluid-mechanical model, the problem

of determining the response of the target material becomes
essentially that of solving the general equations of an in-

viscid, non-conducting fluid which are

g-% + pVY- E_{’ = o0 mass conservation (1-a)
2 . 2 -
5t ¥ VP =0 . Momentum conservation (1-B)
De D 1) _ .
5t ¥ P BT (—5 =0 entropy conservation (1-C)

where p = density, p = pressure, s = specific entropy,
(i.e, entropy per unit mass), '3 = velocity vector which in

spherical coordinates may be written as uf + v + Wﬁ,

D J > . . - .
5 = 3T + q e« Ywhere t is the time, <7 is the gradient
operator,

In addition we need the equation of state of the

medium which will be written at first in general form as

e = f(P:P) (1-D)
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where e 1is the specific internal energy.

It is interesting to note that the hydrodynamical equa-
tions remain the same if characteristic length and time are
scaled because the terms in (1-A) have the same dimensions,
and the same holds for (1-B), (1-C). Therefore we can say
the condition of the shock front and the flow equations are
homogeneous in distance and time, However the inclusion of

conduction or viscosity would introduce second derivatives

and scaling would no longer apply. By experiment the departure

from simple scaling has been found negligible (Hermann and
Jones 1961, Eichelberger and Gehring 1962), which justifies
our neglect of the viscosity and thermal conduction terms in
the problem of impact,

Thus we assume the fluid is inviscid and non heat-
conducting, and that the motion does not involve any kind of
physical and chemical change, Moreover the fluid is supposed
to be baratropic having a polytropic form of the equation of
state, pp“z’= constant, Then under isentropic conditions
(1-D) becomes e = QJEZ%L:EE . No energy changes due to
radiation is taken into account,

These differential equations contain spatial variables
as well as time and the problem of solving them is extremely
difficult, To date, the only solutions are those of Bjork's
(1958, 1961) which are numerical calculations,

The general equations may be simplified by assuming
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spherical symmetry, The equations then become:

eeujee e
du ) 1) (2-B)
FErUErFECC

d (2-0)

% e~y + U p¥) =0

Bjork's calculations (1958, 61) show that the meteor-
itic impact is so rapid that the time required for the compres-
sion pressure to reach its maximum is negligible, The problem
may therefore be reduced to that of an explosionﬁat the center
of impact, On this basis we further suppose that the shape of
the projectile is immaterial.

Equation (2-C) implies that entropy remains constant
along the path followed by an element of ﬁhe fluid provided
that it does not traverse a shock front, From equation (2-A)
we can note the spherical attenuation, an important point.of

difference between the cases of spherical and plane wave,

(a) Similarity conditions

Sedov (1959) has'shown that a simple solution to the
hydrodynamic equations (2-A,B,C) exists under certain condi-
tions, If from the given variables and parameters defining

the initial conditions we can form two and only two dimen-
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sionless quantities, then time, one of the independent vari-
ables can be suppressed in the equations. In a blast wave the
initial conditions are defined by the total energy Eo' »
the pre-blast pressure Py » and the initial density of the
medium Po « In the equations themselves are the independent
variables r and t, and the constant ¥ ., From these six

quantities Sedov has shown that there exists the dimension-

less constant (¥ ) and the dimensionless variables (A), (7).

Where
1/5
1/5 2
A= 6,00 [ ()
and
. ) p°5/6t
- i/3_1/3
Eo po

Now for the impact of a large meteorite on the moon,

30 2/5 -1

with Eo = 107" ergs, A= 10'6r/t and (=10 t. Thus

for material at depths less than 104

cm and times less than
10™2 sec, A~102'l§ and therefore A\ 77 T . Under these con-
ditions the variable U is negligible in comparison with A ,
and also the constant ¥ since ¥ = 6, We may therefore proceed
on the assmnption that self-similarity will hold at least as

a first approximation. This assumption is good for times

< lO"2 sec,, but begins to break down after that time,
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The dimensionless variable A may be simplified to

A=A 8

E 1/5
where A 1 is a constant (ﬁ) , the value where r = t =
)
The variable part of A is now defined purely in terms
of the physical variables r and t since § = re=2/5

Following Courant and Friedrichs (1948) we introduce
the dimensionless functions of reduced velocity, U(g ), re-

duced density D{( § ), reduced pressure P( § ) and reduced in-

ternal energy G(£§). The physical variables may now be

written to exclude r as follows:

u=t"t&u(%) (3-2)

P =py D(E) (3-B)

p/p = £200-1) 82, %) (30c)

e = t200-1) 25 §) (3-D)
where  a = 2/5
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{v) Conditions at the shock front

A shock front is a discontinuity in physical conditions,
particularly density. From (3-B) it is clear that any constant
value of g defines the movement of a surface of constant den-
sity through the medium., It is now necessary to identify one
of these surfaces, i,e, a certain value of §', with the shock
wave surface,

If the pressure, density, velocity and internal energy

of the undisturbed medium are Pos Pgos Ugs €, and the values

immediately behind the shock front are p#*, p*, u* and e* then

these quantities are related by the Rankine-Hugoniot equations:

PoC = p*(c-u¥*) (4-3)
P* -p, = p, ug u* (4-B)
e* _e = 1/2(p + p*) (- -.l;) (4-C)

where ¢ is the velocity of sound in the medium and ug is

the velocity of propagation of the shock wave, Thus'§ = §°

= constant can be defined as the shock front if equations 4-A,

B and C are satisfied,

A . dar - a-1
This is so because U, = I =q §b t o

§=§o
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It is convenient to work in terms of the reduced pressure,
density, velocity and internal energy which are P*, D*, U* and
G* immediately behind the shock front, Substituting these

values the Rankine-Hugoniot equations become:

D*¥(q - U*) - o = o (5-a)
D* U*(q - U*) -D*p* = ———§-° (5-B)
P, (ug/a)
G* = % __P_O___z + D*p* (1 - %*) (5-C)
po(c/a)

But in the blast wave problem under consideration

pO << po(us/a)z )

. Here the form of the equation of state chosen is

= 1 .
e = pgo(p) where @ (p) = -0 Thus we can write from
(3-C) and (3-D) a second equation for G* at the shock front:

Gk = pOD*P* F(poD) (G—A)
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from (5-A):

D¥(a - U*) = ¢

Tea1-2% (6-B)
Again from (5-B), and (5-C) since P, is small, we find
2 1
D*P* =" (1 - 5;) (e-C)

2
6* =3 o® (1 - 33 (6-D)

Substituting (6-B,C,D) in (6-A) we get
3 (- FD=p, Plop%) (6-E)

D*(§) = (r+l) / (v-1)

Thus it can be seen that a single real value of § °
exists at the shock front., The actual value of §o can be
found from energy considerations,

For the fast processes like meteoritic impacts we can
reasonably assume the total energy to be constant during the
crater formation, For § = §° representing the shock at
time *'t' , the total energy of the fluid shell (kinetic + in-

ternal) is given by the volume - integral of the total energy
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per unit volume

E(t) = {%‘- u2 +p—($:1-)- 21rr2pdr (7-a)

when Rs (t) is the shock radius at time *'t°, TD_'%TP' = internal

energy per gm for the baratropic medium,

We know that for r =R_ , §= §_ , so by substituting

s o
r = §° t2/5§, we get
1
E(t) = 21rp°§°5 {-;‘- Uz +T—ff} D§4 df (7-B)
o

since at the shock front § =1,

The value of §  can be evaluated from this equation.
Although 50 is of critical interest in the problem, since it
gives the depth of penetration of the shock front, this integral
cannot immediately be eva;l.uated; It is necessary to ekplore the
functional form of U, P and D and evaluate the integral numer-

ically.
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Mathematical treatment

3

(a) Self-similar hydro-dynamical equations:

The solution of the hydrodynamic equations (2-A,B,C)
becomes simpler on substituting eq. (3-A,B,C) in them because
of the elimination of the variable ‘t' and we are thus led to
the following set 6f ordinary differential equations instead

of the partial ones

§D/D = - (§6+3U)/ (U - a) (8-a)

) | r
§U = [. U(U - a) (U - 1) +(28 + 3U) pJ (U - a)? -n{, (8-B)

L.

Ep/P = {(r—l) U (U-1) -(U-q) [(3&-1) u.z;

+ LZB/(U-a) + 2} p} / {(U—-a)z . xp] (8-C)

where the primes denote differentiation with respect to single

independent variable § , and B = a-1

Dividing eq. (8-C) by eq. (8-B) gives

§P/EU = -g% =P [N(U) + PQ(U)J/ [R(U) + PS (Uﬁ (8-D)
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vhere
N(U) =¥0(3a -~ 1 - 2U0) + (3 - a) U -2a

28/(U - a) + 27

Q(u)
R(U) = U(U - a) (1 - U)
S(Uu) =28 + 3UrY

We will first solve (8-D) and then (8-A) and (8-B).

It is clear that since no closed form of solution is possible

numerical methods must be used,

(b) The Initial Conditions:

Mathematically we will solve the problem by starting at
a known point (U*, D*, P*), These starting conditions, at the
shock-front, are characterized by the Rankine-Hugoniot equa-

tions which for very high Mach number are

P
2o . e
o]
2us
u* = _-—M (Q-B)
p*=pu’ 2 (9-C)
¥+l
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on the shock front § = '§° = constant, and so these equations

‘can be expressed in reduced form by using (3-A,B,C).

Ut = U(s,) = 2a//(x+1) (9-D)
p* = D(5;) = (+1) / (1) (9-E)
P* = P(5,) = 2a%(r-1) //(x+1)2 ~ (9-F)

where a = 2/5 according to the total energy conservation con-
dition,

Since the constants o and Y are known we can calcu-
late the initial values U(gb) s D(§6) and P(§6) and can
proceed with the numerical solution of 8-D, The details of
the numerical solution are given in the appendix, Now for a
medium for which Y = 6 the corresponding reduced variables are
given as D(§°) = 1.4, U(§o) = 0,114285, P(§;) = 0,03265,

The starting point for the solution of eq, (8-D) has
been fixed as (0.114285, 0,03265). The equations have been
solved numerically (for details see appendix). The functional

form of U(§), P(§), D(§) having been thus calculated, the

energy integral in (7-B) is computed numerically using Simpson's

Rule, So the value of §° is determined as follows:
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We know

E = 21rp° 505 I(¥) where I(Y) = [—% U2 + )’_I:T] D 54 ag

o

2

But E = £ .~% mv® where f is the fraction of the impact

energy converted into the shock energy.

1 1/5 1 2\ Vs
§o=[7ﬁ>jm'] (’f-7W)

(9-G)

1/5
5.678 x 10~1 [f ] %mvz]

The velocity v is supposed to be the vertical velocity of
meteorite, and the direction of meteorite velocity is un-
specified, Experiments have shown that the crater dimensions
depend only upon the normal component of the velocity up to
the angles of incidence of about 55° (Summers and Charters

1959), For mathematical convenience we will choose f =1,

(c) Limit of Penetration

We want to find the depth at which the penetration
velocity becomes sonic, It is convenient to consider the

ratio between the pressures just behind and just in front of
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the shock in order to establish the above mentioned sonic
‘criterion. The pressure ratio can be derived from the Rankine-

Hugoniot shock relations as follows:

2
u
_.g._ =% {(x_]_) + (F+l) b* (10a)
C pO

where ‘'c' is the sound speed in the undisturbed medium,

2(p* -1
u* _ ‘P Po )

(10-B)
“s  -1) + (v+1) B /p

where u* is the particle velocity just behind the shock front,

From the above two equations we get

2 2 u? 2 (p*/p, - 1)°
ur _u*t -8 - o (10-C)
2 LT "[(r v-1) + (v+1) p*/po_}'
8
When u?® _ ;. we get a quadratic in y (=p*/,)
C pO

zyz - \]/E(r-i- 1) + 4:! + [2 -7 (X-l)] =0 (10-D)
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1/2

1}/=El_fq}l + 1] +% {:[)’(Hl) + 4] 2 -8 [ -mf-l)]} (10-E)

Only the +ve sign for the root of the quadratic equa-
tion has been kept in order that it should be in accord with
shock Mach humber MZ>1,

The l:.nu.t of penetration of the meteorite (we shall
call it the sonic crater depth) is determined as follows,

The pressure behind the shock wave is given by (3-C)
as

2

_ ~6/5
p=t poD* P* § (3-C)

Now p = \ypo where ¥= 23,6 (from 10-E) for a medium with
¥= 6, and p,» the pressure on the undisturbed side of the
medium = 200 kilobars, corresponding to the crushing strength

of averagium, Now from our definition, § applied to the

shock front where E = §,§= §o I 4 €o t2/5 . Elimin-

ating 't' from the above two equations, we get‘

8/3 [p prpr /3 8/3 [p _p*p*
r = §O [ OP ] = SO -—-—-—\'?po (10—F)

where 'r' is the sonic crater depth,
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go is known from (9-G). So all the quantities of right

side of eq. 10-F are known, Therefore 'r' can be computed,

(d) Justification of Self Similarity

We know that £he fundamental pre-requisite for the
flow field to be self-similar is that the density ratio
across the shock, i.e. D*, should remain constant, This will
hold good for a small interval of time after which the flow
will no longer be self similar, Now let us see whether the
self similar condition holds good in the time interval during
which the particle velocity decays to that of the sound,

We know ~%: can be expressed in terms of Mach number

as follows:

u* _ 2(M%-1)
c ~ (F+I)M

The Mach number M of the shock wave corresponding to the
conditions where the velocity of the material has decreased

to ¢ 1is given by the expression

,) 1/2
we il +{1+ (@) wr] (11-2)

Only the positive sign has been retained in order that M >1.

The Mie-Gruneisen equation of state for ‘'Averagium' has
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.

been picked such that ¥ = 6, So we find

* +1
Y

-1 + 2/M

Thus at the start the condition is

o _ ¥l _
&= %I 1.4

when the particle velocity decays to sonic velocity, M = 3,75,
and the density ratio across the shock front ekl » reduces to
1.37 corresponding closely tp the initial valueoof l.4. So
the similarity condition is approximately satisfied, because
the density ratio across the shock remains approximately con-

stant,

RESULTS 3

The constants for the polytropic equation of state
used in our calculations have been fixed from extrapolation
of the experimental results of Walsh et al (1957) and from
the lower part of the theoretical curves of Gilvarry and Hill
(1956) ., The latter have used the Thomas-Fermi equation of
state for these meteoritic velocities, and the theory is prob-
ably reliable for the high pressures existing before the
particle velocity decreases to the veloéity of sound, The

i

differential equations were solved by.Rhnge—Kutta method
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;nd the energy integral evaluated numerically using the
Simpson rule, (The details are given in the appendix,)

The (U,P) solution curve, (U,§) and (§,D) curves are
as shown in figs. 1, 2, 3, We find a sharp decrease in D
just behind the shock front, but it goes gradually to zero
as we move away from the shock front, It should be noted
from fig, 3 that at the position § = 0,15 behind the shock
front'density is zero, This corresponds to a rarefaction or
cavitation and has been previously noted by Davids and Huang
(1962) .
A An estimate of the sonic crater size has been made by
applying the sonic criterion of the pressure ratio across the
shock front which is equal to 23,6 for ¥ = 6, The value of p o
i,e, the pressure of the undisturbed medium has been assumed to
be equal to the shear modulus of 'averagium' which has been
taken as 200 kilobars, The energy has been assumed to remain
constant throughout the process., The impact kinetic enerQy of
the projectile manifests itself as heat, light, breaking and
throwing of the materials, elastic and plastic flow, and the
shock wave, For the time being we have supposed the whole
input energy to be converted into shock energy, corresponding
to £ =1, PFurther work must be done to obtain a more realistic
value because certainly f is less than 1,0,

The particle velocity represents the rate of penetration
of the meteorite, the sonic radius, therefore, is the depth at

which the meteorite has been decelerated to the speed of sound,
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~ At this condition the pressure just behind the shock front is
approximately 20 times greater than the shear strength of the
material of the moon surface, Let us examine how the fluid
model should behave when the particle velocity has become equal
to the sound velocity,

The pressure exerted on the shocked side of the front
is 23 times the ﬁressure on the undisturbed side, If we suppose
as a very rough approximation that the self-similarity re-
mains valid after the shock wave decays into the sound wave
then according to (3-C), the time required for the pressure to
decay to the shear modulus would be almost 12 times the sonic
time interval, At this time the crater radius would be 2,7
times the sonic crater depth, This would be true only if the
flow field remains similar and the medium remains fluid through-
out, It is nevertheless a useful approximation and is probably
more close to the upper limit than the lower limit because
100% efficiency is assumed in the self similar calculations,

We can see that at the sonic depth, the difference in
the internal energies of the shocked and undisturbed media is

16 x 101°

ergs/gm which is almost 15 times the latent heat of
fusion of iron., So the shocked medium is definitely in a fluid
state at this time, Spherical divergence is a cause of shock
decay and this becomes quite dominant at large radii, At the
sonic depth the energy difference across the shock is about

11

1.6 x 10 ergs/gm which is sufficient to melt the lunar material.,

However, after penetrating further by a factor of 2,7, the energy
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is no longer able to fuse and melt the material. Somewhere
-between these limits, the liquid hypervelocity equations fail,
It is convenient to take this change of mechanism at the sonic
crater depth,

So from now onward the hydrodynamic model will no longer
be used, The solid-solid, shock-solid, and the liquid-solid
impact should be sufficiently valid approximations, Cracking,
crushing and disturbance of the lunar material under brittle
conditions (Bowden and Brunton 196l1) will be considered in a
later report.,

» The penetration depth of the meteorite, defined as the
sonic depth, varies from 4 to 6 meteorite diameters, This
confirms Baldwin's (1962) prediction regarding the formation
of the central mountain peaks.

The sonic crater depths have been calculated for various

14 yom (Hawkins 1963)

masses of meteors ranging from 104 to 10
and for the meteorite velocity between 15 to 75 km/sec., The
plots for the impact velocity vs., sonic crater depth and the
meteoritic mass vs, the sonic crater depth are shown in Figs,

(4, 5, 6). The slope of this straight line is ,68 which agrees
with 2/3rd power law of Eichelberger and Gehring (1962) ob-
tained by curve fitting, and with Walsh and Tillotson (1963)
relation EF}d = k<y° C‘)s when 5F)is crater penetration depth,
d the projectile dimengion, Vo the projectile velocity,

K and S being constant and the value of © is as follows:




-23-

7

° b= .61 + .02 for the velocity range 10" to 2,5 X 107 cm/sec

6 = .62 + ,03 for the velocity range 106 to 4 x 106 cm/sec

These values are not in bad agreement with our calculation of
6 = .68,

The fact that the self-similarity approximation for de-
termining the sonic crater depth holds fairly good, is corrob-
orated by the velocity-depth profiles for the meteor crater,
Arizona, as calculated by Bjork (196l1l). For a meteorite mass
12,000 tons and an impact velocity 30 km/sec, the sonic crater
depth for iron-tuff impact, using Olshaker and Bjork. (1962)
scaling laws, is found to be 43,7 meters by our calculations,
corresponding to Bjork's 57 meters, This latter value is a
sum of sonic depth and projectile height, which was taken as
12 meters,

So for the early phases our results seem to be in good
agreement with other methods. The lunar central mountain
peaks are supposed to be formed during the earlier stages when
the particle velocity is sufficient to melt and vaporize the
material by a hypervelocity explosion,

In our calculations we considered the Grilineisen's con-
stant to be the same for all impact velocities and this
assumption might be questioned, Moreover we have not taken
into account the increase in the crater depth due to later

fusion or vaporization of the medium caused by the shock wave
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after the projectile has slowed down to a velocity less than

the speed of sound,

Concluding Remarks:

We have dealt with a symmetric problem of a point re-
lease of energy in a given medium, There is need for introduc-
tion of two spatial coordinates in our hydrodynamical equations,

The similarity assumption restricts the equation of
state to a special form, and in relatively weaker stages of
shock propagation this assumption is poor., Therefore in the
later stages, the shock propagation is characteristically
non-similar, So quasi-similarity technique (Oshima 1960)
for solving the problem should be applied (Rae and Kirchner
1963.)

It is necessary that the velocity corresponding to
energy conservation (in explosion case) and the momentum
conservation should be matched and used in quasi similarity

calculations,
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égpendix (A) =

The polytropic form of the equation of state which has
been chosen is amenable to the similarity solution of the
fluid-dynamical equations, The similarity solution holds good
for the earlier stages of the impact. Non-similar solution
would give the proper description at a later time, As we are
interested in the time interval during which the particle
velocity becomes sonic, we have fixed the value of ¥ = 6,

Po = 4, P, = 200 kilobars, So for such a medium the initial
values have been fixed as P (§°) = 0,03265, U(go) = 0,114285,
D( §°) = 1,4, These values can give us the initial point to
start the solution of the differential equations,

The differential Eq. (8-D)

-g% = P [N(U) + PQ(U)_]/[R(U) + PS(U)] fS-D)

has singularities at (P =0, U=0), (P=0, U=aqa), (P =0, U=1)
and at the shock surface where P = 0,03265, U = 0,114285, The
equation becomes singular where g% ='§ o For details see
Davids and Calvit, 1962,

In order that the above equation be amenable to Runge-
Kutta method, (Romanelli 1959) the initial points to start
numerical calculations should not be a singular point, But
the iniﬁial conditions fixed are those for the shock point; so
the Runge-Kutta method cannot be applied as it is, One way of

solving the equation is to start from P = o, U= a and de-
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éermine the limiting value of slopes (Davids and Calvit, 1962),
The values of the slope arew , o, ~2§i » We put for a = 4,
the slope = -0.2. So the starting point for the Runge-Kutta
numerical integration can be taken as U = ,399, P = 0,0002
and we can go back in steps till we hit the shock-point., Then
we can fix the initial conditions for the other two equations,

But we can evaluate the slope 'g% at the shock points
by taking limits and then exclude the unstable zone and fix
up the starting point by linear extrapolation using the suitable

limiting value of the slope. The limit can be evaluated as

follows:

Lim
U -,Us

ojo

g% = when (Us’Ps) represents the shock point of

P —-’Ps

P-U plane, Now applying L'Hopital's Rule at the shock front

. d _ .. dpsau [N + 2p@] + P [an/du. + pdg/du

Lim 35 = Lip 9+ pds/d0 + 5d5/30 (12-a)
From this we get

AX> +BX+C=o0 (12-B)

where: X

&l&

Lip



A=3S
. ar ds ]
B—I:il-’m [36+Pa-ﬁ—n— 2PQ

C = Lim - EiN/dU + PdQ/dU] P
—>

The solution of this quadratic equation gives two real
roots for ¥ = 6, and the roots are X = 0,284165 and X = -0.206069,
indicating a discontinuity at the shock front which satisfies
the physical condition of a discontinuity in velocity, pressure,
hence density, etc,

Again for other equations
2?“3) = |- a? -xp_]/ [R(U)+ S(U)] (8-B)

Applying L'Hopital's Rule

2(U-a) -Y dp/du
Lm = Lim "'L_ai'—td's_L' (12-0)
( Y 7 F*m

U+

= -3,1569 at the shock point (Us,Ps)

5 can be taken as 1 at the shock, hence the suitable

starting point for numerical solution of the above differential
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équation, can be computed using this limiting value of the
slope -safia o
The solution of the third differential equation now be-
comes a straightforward problem of numerical analysis,
The computations were performed on IBM 1620 machine at
the Boston University Computing Center., The details of the

programs appear in Appendix B,
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APPENDIX (B)

PROGRAM 1

LOCATION OF ACOQUSTIC MASS FRONT IN SHOCK WAVE ANALYSIS
U‘l‘lEl\“SIOl‘ Y(/ﬁ;S);YpU’,R),nl/..&:\-V(ll;.R),SA(:\.«H!R ,SC(E)
DIMENSION Z{(4)+sX{4)eYA(4L)

QA(2)=.5

SA(3)=1e—1e/SQRTF (2]
SA{4)=1e+1e/SQRTF (2]
SA(5)1=1e/60

SB(2)=2,.

SB(3)=1. .
SB(4)=1a

SB(5)1=2.

SC(2)=1e/2
SC(3)1=5A(3)
SC(4)=5A(4)
SC(5)=1e/2e

PB=1ls

DELTA=1e/100s

M=1N9

L=4

H=le01

G=6e

AL= o4

W= (2e*AL)/(G+10W)
X(1)Y=1.

X(2)1=4
X(3)=2¢¥ALXAL* (G=1e )/ (G+1s 1 %32
X(4)=(G+le) /(G=10) |
YI=4e%(3e1416)% (4S¥X(2)%¥X(2)+X{3)/(G-le))X(4)*(X(]1))*x4
PRINT 302,YI

FORMAT( 4H YI=E1Be4)
Y(1el)= Ne119NN28
Y(2+1)=2,0316816658
Y(341)=-NeN157745
Y(4e1)=—a00CND1403
YP(lsl)=1a

N(1es1)=00

N(2s11=0a

N(3+1)1=0

N(4s1)1=",

DO 70 I=1,L
YA(I)=X(1)

CONTINUE
2(1)=1.-PB*DELTA

J=?

T=1

KM=1

UsY(1lsJ-1)

P=yY{(2sJ-1)

AA=3 ¢ #AL—1e—2 0%l
AR=(AL-1e)#P/ {1 J=AL)
AF=34-AL

UN=G#*L ¢AA+AF*j=D g #A|
QU=2e#AB+2 ¢ #G#P

FF=P* (UN+QU)

RU=U* (U-AL)*(1l.-)
SU= (2e¢ *(AL-1le)+3¢%#G*¥U) %P
GG=RU+SU
YP(2+J)=FF/GG
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. YP(39J)=({U-AL#*%#2=G%*P) /(RU+51))
YP(hGeJ)=(1le+3exlixYP{24J) )/ (AL-U)
YP(leJ)=1a
RO TO (4991) 9KM
YK{(TsJ)=YP(IsJ)
IF(I-L115916916
T=T+1
~0 TO 4
1=-1
7 Y Uled )=y ia s =1 )+H¥SACII ¥ (YKL o J) =SBl F¥L(Tsd=-1))
QUTed1=0(TeJ-1)+3e*SA{J)I#( YK(I4J)=-SBUIIIFQ(I4J=1))1=SCLI)#YK(]sJ)
TF(I-L)1891991C
18 I=1+1
GO T0 17
19 IF(J=-5)20921s21
20 J=J+1
GO 70 13
21 DO 97 I=1sL
Y{1eJ=1)1=Y(1sJ)
CONTINUE
X{1)=EXPF(Y(3sJ))
X(4)=EXPF(Y(4sJ))
X(2)y=Y(1sJ)
X{31=Y(2+J)
KM=2
GO TO 2
91 TF(Y(1s1)-e399) 264269630
26 PRINT 37209 (I YP( TeJ)oeY(IsJ)sQ(Isd)sel=1yL)
PRINT 303¢X(1)sX(2)9X(3)sX(4) _
303 FORMAT(6H X{(1)=E18e496H X(2)=E1BebstH X(3)=E1Bebsbr X{4)}=F18e4)
300 FORMAT(3H I=1193E18e4/3H I=1153E1844)
DO 130 I=1»sL
Y(Is1)=Y(Is5)
QEIs1)=Q(1+5)
130 CONTINUE
IF(Z(1)=X{(111124550,550
557 DN 56N I=2,6L
ZUIy= XCID)+(X(I) —YA(DI))*® (Z(1)= X{1))/7{X(1)=YAC(1l))
560 CONTINUE
YB=G,%(3e1416)% (o45%2(2)%2(2)+2(3)/(G=1e) ) *¥Z(4)%¥(Z(1))**4
LN=PR
PRINT 279sYBsLNsZ{1)
. 209 FORMAT(4H YR=E18e494H LN=I3 +6H Z(1)=E1844)
PP=PB /2
KR=PB
KC=KB/2
PC=KC
IF(KB-M)5904630,630
590 IF(PP-PC)620+620+60C
600 YZ=44%YB
GO TO 625
6270 Y7=2.%YB
625 YS=Y1+YZ
Y1=YS
PRINT 200,YS
200 FORMAT(4H YS=E1844)
IF(Z(1)-e001)63054009400
400 IF(Z2(4)1-N04001)630+450+450
450 PB=PB+1le.
KB=KB+1

Joooan e

ed
oAl

\0

-
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IF(Z2(1)-X(1)-DELTA)654+80+80
Z11)=1.-PB*DELTA

GO TO 550
SUM={1e/34 1 *¥DEL TA¥{YS+YB)
PRTINT 201,4c1M

FORMAT (5H SUM=E18e4)

STOP

END

PROGRAM 2

COMPU TATION OF SONIC CRATER DEPTH

FORMAT (28H ACOUSITIC VELOCITY(CM/SEC)=E1642)

FORMAT (45H DECAY TIME VELOCITY(CM) SONIC RADIUS(CM))
FORMAT(F12.79516029E1804)

FORMAT(E1Be49s2F34192E16e4)

FORMAT(21H MASS NF METENIR(GMS Ii=F1544)

FORMAT (34H COMPUTATION OF SONIC CRATER DEPTH)
PRINT 2935

RFAD 206sSUMesGoRHO ALV

AL=0e4

U=2«%AL/(G+1e)
D=(G+1e)/(G-1le)
PR=2#,16%(G=1¢)/(G+1e)%%2
PS=24% (1N ) %%11

PO 301 N=1,11
Q=(A/1Ce ) ®(1Ne ) #%N

PRINT 20840

DRINT 206

DO 301 IK=1 5

RIK=TK

¥=RIKx»V

77=Q%X*¥X / (RHO¥ (M)
21=(ZZ)1*%(1e/54)
T=(D*PR¥RHO#ZI*#Z1)/(23.5%#P5S)
TT=(T)%% (54 /60 )
UUsU#RZTI#((TTI®*%(-3,/5.1)
RC={(Z1) #((T)#%(14/34))
PRINT 227sTTsXsRC

CONTINUE

PRINT 21nsUU

STOP

FND ' .
3228423B0E-056e0440 1«0CE 07 l«50E 06
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